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1 Group Cohomology, Simple and Semisimple Modules, and
Schur’s Lemma

1.1 More on group cohomology

If G is a group, we have the bar resolution of Z as a Z[G]-module:

Z[Gi+?) L1 ziGH Z[G) —— 7
We get HY (G, A) = Ext%[G] (Z,A), and
0
Homg (Z[G], A) —2— Homgye(Z[G?], A) — - --

We get cochains C*(G < A) = {f : G* — A}, where C°(G,A) = A. We have the
differentials d' : C*(G, A) — C*T1(G, A), where

doa(g) =ga—a,

d'f(g,h) = gf(h) = f(gh) + [ (9),
and so on.

We have the isomorphism C*(G, A) = Homg ¢ (Z[G™], A) by f — ¢, where ¢(go, ..., i) =
ggf(galgl,gflgg, e ,g;_llgi) (and extended linearly). For the inverse, given ¢, define
f(gla"'7gi):80(17917919271"7917"'7gi)' ) ) )

We have the i-cocycles Z¢(G, A) = ker(d’) and the i-coboundaries B*(G, A) = im(d'~!).
Then we have A
Z'(G, A)

Bi(G, A)

1

H(G, A)

We can see
HY(G,A) = z°G, A) = A,



ZHG, A) ={f : G — A f(gh) = g(9) + gf(h) Vg, h},
BYG,A)={grrga—alac A}.
If A is a trivial G-module, then H'(G, A) = Z'(G, A) = Hom(G, A). Then

H?*(G, A) = {group extensions 1 - A =& —- G — 1}/ ~.

If f € Z?(G, A) with f(g,1) = f(1,9) = 0 for all g € G, then the “factor set” mapsto &y,
where (a, g)(b,h) = (a + gb+ f(g,h), gh).

If L/K is finite Galois and G = Gal(L/K), then G ©O:*, so there is a Z[G]-modules
sturcture on L*. Then H°(G,L* = K*. Hilbert’s theorem 90 can be extended to the
statement that H'(G, L*) = 0. If G is cyclic, we get the classical Hilbert’s theorem 90.

We get Kummer theory: if char(K) tn and p,, C L, then we get an exact sequence

1 fhn, L* s L — 1
We get by Hilbert’s theorem 90:

1 —— un(K) KX " K" —— HYG, ) —— 0

So we get
Hom(G, fin) = HYG, pip) = KX N LX" /KX = AJK*"

which gives us Kummer duality. What is H?(G, L*)?

1.2 Simple modules, semisimple modules, and Schur’s lemma
Let R be a nonzero ring. Recall that R is simple if it has no nonzero, proper 2-sided ideals.
Example 1.1. Let D be a division ring. Then M, (D) is simple.
Definition 1.1. A left R-module is
1. simple (or irreducible) if it has no nonzero, proper R-submodules.
2. indecomposable if it is not the direct sum of two R-submodules.

3. semisimple (or completely decomposable) if it is a direct sum of simple sub-
modules.

Remark 1.1. Being simple is the same as being the same as being semisimple and inde-
composable.

Remark 1.2. Semisimple is the same as being a sum of simple submodules.

Remark 1.3. An R-module is semisimple iff every submodule is a summand of it.



Example 1.2. Let D be a division ring. Then D is a simple D-module, and M, (D) is a
semisimple M, (D)-module : M, (D) = (D™)", where D", the space of column vectors, is
simple as an M, (D)-module.

Example 1.3. Vector spaces are semisimple.
Example 1.4. The simple Z-modules are Z/pZ for p prime.

Example 1.5. Z is indecomposable but not semisimple.

Example 1.6. Let It = [; j C M(F). Then R © F? and has a submodule [3] So

it is not simple. On the other hand, if [Z] € F? with b # 0, it generates F2. So F? is
indecomposable.

Lemma 1.1 (Schur). Let R be a ring, and let M, N be simple R-modules. Then any
R-module homomorphism f: M — N is either 0 or an isomorphism.

Proof. Suppose f # 0. Then ker(f) C M, so ker(f) = 0. Now im(f) C N and is not 0, so
im(f) = N. So f is an isomorphism. O

We can define composition series for modules as with groups. An analogue of the
Jordan-Hélder theorem still holds.

Corollary 1.1. Let M be a simple R-module. Then Endr(M) is a division ring.
Proof. 1f 0 # f € Endg(M), then f is an isomorphism. So f has an inverse. O

Lemma 1.2. Let M be a simple R-module, let N > 1, and let D = Endg(M). Then
Endg(M™) 2 M, (D)

Proof. For C € My(D), write C = [¢;; : M — M]. Let ® : M,(D) — Endr(M) by
S(C)(m1,....mn) = (32, ¢1,;(mj), ..., >, ¢n,j(my)). This is an isomorphism. O
Lemma 1.3. Suppose M = N & --- & N'*, where N; are distinct simple modules and
n; > 1. Then Endp(M) = [[%, My, (D;) and D; = Endg(N;).
Definition 1.2. A ring R # 0 is semisimple if it is semisimple as a left R-module.
Lemma 1.4. The following are equivalent:

1. R is a semisimple ring.

2. R is a direct sum of its minimal left ideals.

3. R is a finite direct sum of minimal left ideals.

Proof. Suppose R = ), ; Ji, where the J; are minimal left ideals. We want to show that I
is finite. We get 1 = j;; +---+7Ji,, where i, € I and j;, € J;.. Then J;; +---+J;, = R. O



	Group Cohomology, Simple and Semisimple Modules, and Schur's Lemma
	More on group cohomology
	Simple modules, semisimple modules, and Schur's lemma


